Control Systems

Transfer Functions and Block Diagrams of Control Systems

Transfer Functions

A transfer function is a mathematical formulation that relates the output variable of a device to the input variable. For linear devices, the transfer function is independent of the input quantity and solely dependent on the parameters of the device together with any operations of time, such as differentiation and integration that it may possess.

The transfer function can be obtained through the following steps:

  • Determine the governing equation for the device expressed in terms of the output and input variables.
  • Determine the Laplace transforming the governing equation, assuming all the initial conditions to be zero.
  • Rearrange the equation to yield the ratio of the output to input variable.

The properties of transfer functions can be summarized as follows:

  • The transfer function is defined only for a linear time-invariant system. It is meaningless for nonlinear systems.
  • The transfer function between an input variable and an output variable of a system is defined as the ratio of the Laplace transform of the output to the Laplace transform of the input or as the Laplace transform of the impulse response. The impulse response of the linear system is defined as the output response of the system when the input is a unit impulse function.
  • All the initial conditions of the system are assumed to be zero.
  • The transfer function is independent of the input.

Control Systems Block Diagrams

The block diagram is pictorial representation of the equations of the system. Each block represents a mathematical operation, and the blocks are interconnected to satisfy the governing equations of the system. Therefore, a block diagram provides a chart of the procedure to be followed in combining the simultaneous equations, from which useful information can be obtained without finding a complete analytical solution.

Let’s consider the diagram below:

Figure 1(a) basic building block of a block diagram

The above figure shows a basic building block of a complex block diagram. The arrows on the diagram imply the block has a unilateral property i.e. a signal can only pass in the direction of the arrows. A box is the symbol for multiplication; the input quantity is multiplied by the function in the box to obtain the output.

The circles indicate summing points (in an algebraic sense). Any linear mathematical expression can be expressed by block diagram notation.

Figure 1(b) block diagram of an elementary feedback control system

R(s) – reference variable (input signal)

C(s) – output signal (controlled variable)

B(s) – feedback signal = H(s)C(s)

E(s) – actuating signal (error variable) = R(s) – B(s)

G(s) – forward path transfer function or open loop transfer function = C(s)/H(s)

M(s) – closed loop transfer function = C(s)/R(s) = G(s)/1+G(s)H(s)

Don’t miss out on key updates, join our newsletter  List

H(s) – feedback path transfer function

G(s)H(s) – loop gain

The expression for the output quantity with negative feedback is given by:

The transfer function M of the closed loop system is given by:

          

Share
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

What to Expect from PCB Assembly Services in China

The importance of printed circuit board (PCB) technology has escalated throughout the years with the…

2 days ago

Magneto-Optic Current Sensors for High Voltage, High Power Transmission Lines

One of the key challenges in measuring the electrical current in high voltage, high power…

4 days ago

How the Wiegand Effect is used in Sensing Instruments

The Concept behind Wiegand Effect Based Sensors   The Wiegand effect technology employs the unique…

6 days ago

Piezoelectric Accelerometer: Principle of Operation & Applications

An accelerometer is a sensor that is designed to measure acceleration or rate of change…

1 week ago

The USB-6009 Data Acquisition Card Features

The USB-6009 is a small external data acquisition and control device manufactured by National Instruments…

1 week ago

How X-Y Tables are used in Position Control Applications

X-Y tables are utilized as components in many systems where reprogrammable position control is desired.…

2 weeks ago