Control Systems

Transfer Functions and Block Diagrams of Control Systems

Transfer Functions

A transfer function is a mathematical formulation that relates the output variable of a device to the input variable. For linear devices, the transfer function is independent of the input quantity and solely dependent on the parameters of the device together with any operations of time, such as differentiation and integration that it may possess.

The transfer function can be obtained through the following steps:

  • Determine the governing equation for the device expressed in terms of the output and input variables.
  • Determine the Laplace transforming the governing equation, assuming all the initial conditions to be zero.
  • Rearrange the equation to yield the ratio of the output to input variable.

The properties of transfer functions can be summarized as follows:

  • The transfer function is defined only for a linear time-invariant system. It is meaningless for nonlinear systems.
  • The transfer function between an input variable and an output variable of a system is defined as the ratio of the Laplace transform of the output to the Laplace transform of the input or as the Laplace transform of the impulse response. The impulse response of the linear system is defined as the output response of the system when the input is a unit impulse function.
  • All the initial conditions of the system are assumed to be zero.
  • The transfer function is independent of the input.

Control Systems Block Diagrams

The block diagram is pictorial representation of the equations of the system. Each block represents a mathematical operation, and the blocks are interconnected to satisfy the governing equations of the system. Therefore, a block diagram provides a chart of the procedure to be followed in combining the simultaneous equations, from which useful information can be obtained without finding a complete analytical solution.

Let’s consider the diagram below:

Figure 1(a) basic building block of a block diagram

The above figure shows a basic building block of a complex block diagram. The arrows on the diagram imply the block has a unilateral property i.e. a signal can only pass in the direction of the arrows. A box is the symbol for multiplication; the input quantity is multiplied by the function in the box to obtain the output.

The circles indicate summing points (in an algebraic sense). Any linear mathematical expression can be expressed by block diagram notation.

Figure 1(b) block diagram of an elementary feedback control system

R(s) – reference variable (input signal)

C(s) – output signal (controlled variable)

B(s) – feedback signal = H(s)C(s)

E(s) – actuating signal (error variable) = R(s) – B(s)

G(s) – forward path transfer function or open loop transfer function = C(s)/H(s)

Don’t miss out on key updates, join our newsletter  List

M(s) – closed loop transfer function = C(s)/R(s) = G(s)/1+G(s)H(s)

H(s) – feedback path transfer function

G(s)H(s) – loop gain

The expression for the output quantity with negative feedback is given by:

The transfer function M of the closed loop system is given by:

          

Share
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

Overvoltage Protection Techniques & Equipment

Overvoltage Protection – Objective, Methods & Equipment The purpose of the protective equipment in a…

1 day ago

Single-Ended vs. Differential Amplifiers

Most often than not, the signal from the sensor in a measurement and control or…

1 week ago

What is Corona Discharge in Power Transmission Conductors?

Corona and its Effects in Power Transmission Systems What is Corona? Corona is the term…

2 weeks ago

6 Types of Machine Guards

What is Machine Guarding? Most machines have cutting blades or rotating/moving parts that can cause…

2 weeks ago

Air Circuit Breakers: Features, Operation & Applications

Air Circuit Breaker Features & Operation An air circuit breaker employs atmospheric air as its…

2 weeks ago

Single-Phase & Three-Phase Inverters: Function and Operation

What is the Purpose of Inverters? Whereas dc machines are controlled by varying the voltage…

3 weeks ago