Robust control is normally used to handle systems with uncertainties & disturbances and with high performances. The objective of robust control is to be able to design controllers that achieve a desired level of performance and also, be able to handle a collection of uncertainty structures specified by the designer. A typical approach is to try to maximise the tolerated uncertainty bounds.
The robust control techniques are based on a formal description of the control problem where the stability and performance objectives must be fulfilled for any plant, S, belonging to a family G. The family of plants may be described by parameter variations, as bounds in frequency response, etc.
Two problems are the core of robust control methodologies:
Analysis – establishing if a regulator, designed with any methodology, will withstand a known modelling error structure and size, in terms of:
Synthesis – determining a regulator that maximises tolerable modelling error for a given performance level, or alternatively, determining the maximum performance level for a given modelling error description.
You may also read:
Image by Pixabay Automation is transforming industries worldwide, and construction is no exception. Companies are…
A closeup shot of a warning lamp in the street at night, image by Freepik…
Impeller flowmeters at times referred to as paddlewheel meters are one of the frequently utilized…
Photo by Héctor Martínez on Unsplash Introduction Yes! If you have old electronic devices that you…
The cosine of the angle between voltage and current in an AC circuit is referred…
Ball transfer units enable smooth, multidirectional movement of loads across flat surfaces. These mechanical components…