Power Systems

Supervisory Control and Data Acquisition in Power Systems

The term supervisory control and data acquisition (SCADA) refers to the network of computer processors that provide control and monitoring of remote electrical or mechanical operation e.g. management of power distribution grid or the control of mechanical processes in a manufacturing plant.

Typical the old SCADA systems would encompass computers and network links that manage the remote operation via a set of field located programmable logic controllers (PLCs) and remote telemetry units (RTUs). These PLCs or RTUs would be connected to field transmitters and actuators and would convert analogue field data into digital form for transmission over the network.

In modern SCADA systems, with respect to high voltage substations or even medium voltage substations, the substations control devices aren’t necessarily RTUs or PLCs but intelligent electronic devices that serve the purpose of protection, local and remote control. These intelligent electronic devices provide means to acquire and transmit the analogue and binary input data to the control system via communication links.

SCADA functions
SCADA functions

SCADA systems are in essence a real-time operating database that represents both the current and past values of status of the field input/output points (tags) used to monitor and control the operation.

Relationships can be set up within the database to enable functional or computed elements to be represented which provide operators with a logical representation of the remote operation. This representation enables the whole operation to be monitored and controlled through a central point of command whereby concise information is available in a clear schematic and textual form typically or graphics workstations.

Related: Types of Busbar Arrangements in Grid Stations and Substations

The supervisory functions of  SCADA system present plant operators with a representation of the current and historical states by means of graphic schematics, event logs and summaries. These screens also identify all abnormal conditions and equipment failures which require operator acknowledgement and remedial actions. The control functions enables specified items of plant to be controlled by issuing direct commands by instigating predetermined control sequences or by automatically making programmed response to a particular event or status change.

Share
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

What to Expect from PCB Assembly Services in China

The importance of printed circuit board (PCB) technology has escalated throughout the years with the…

2 days ago

Magneto-Optic Current Sensors for High Voltage, High Power Transmission Lines

One of the key challenges in measuring the electrical current in high voltage, high power…

4 days ago

How the Wiegand Effect is used in Sensing Instruments

The Concept behind Wiegand Effect Based Sensors   The Wiegand effect technology employs the unique…

6 days ago

Piezoelectric Accelerometer: Principle of Operation & Applications

An accelerometer is a sensor that is designed to measure acceleration or rate of change…

1 week ago

The USB-6009 Data Acquisition Card Features

The USB-6009 is a small external data acquisition and control device manufactured by National Instruments…

1 week ago

How X-Y Tables are used in Position Control Applications

X-Y tables are utilized as components in many systems where reprogrammable position control is desired.…

2 weeks ago