Process Plants Instrumentation

Manipulating Devices & Actuators in Process Instrumentation

The function of the manipulating device is to influence the process variable. Its main purpose is to regulate a mass or energy flow. Mass flows can be either in gaseous or liquid state e.g. steam, natural gas, fuel oil, etc.

The energy flows typically take the form of electrical energy. The energy supply can be varied discontinuously through contacts, relays or contactors or continuously by means of variable transformers, variable resistors or thyristor units.

Examples of Manipulators and Actuators commonly used in Instrumentation and Control Systems have been discussed below.

Mass Flow Manipulators

Manipulators for mass flow include: dosing pump, valve, flap and slide. They are illustrated in the Figure below:

Mass flow manipulators
Figure 1.0 Mass flow manipulators

Energy Flow, Discontinuous Manipulators

Here the manipulators may include: Contact, Relay/contactor or a Thyristor.

Figure 1.1 Energy flow, discontinuous manipulators

Continuous Variable Manipulators

Examples of the manipulators that are used here are: Variable resistance and variable transformer.

Actuators

The manipulating device is often operated by an actuator where the controller cannot operate it directly, for example, if it cannot provide enough power or where the output of the controller is in the wrong energy form for driving the manipulator. The controller then operates either a mechanical-pneumatic or electrically powered driver. For instance, the relays built into switching controllers can typically handle currents up to 5A; external contactors or solid state relays are then used to control the higher power required by the process.

Electric Actuators

These may include: Electromagnet, magnet, 3-phase motor drive, single-phase motor drive as illustrated in the figure below:

Figure 1.3 Electric actuators

Related: Electric Solenoid Actuator – Features & Operation

Pneumatic/Hydraulic Actuators

Examples include: Diaphragm (spring loaded), Diaphragm (double-acting), piston spring-loaded, etc.

Figure 1.4 Pneumatic/hydraulic actuators

Table 1.0 an overview of controllers and their various manipulators/drivers

Controller TypeOperated Manipulators/Drivers
Continuous controllersThyristor unit Adjustable resistor Speed-controlled motors Valves, flaps, slides
2-State controllersContact Relay, contactor, solenoid valve Solid-state relay
3-state controllersRelays
Modulating controllersActuating motors (AC, DC, 3-phase, etc.)

Also Read: Pneumatic Actuators

Don’t miss out on key updates, join our newsletter  List

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

The Power of Automation in Construction: How It Transforms Efficiency and Safety

Image by Pixabay Automation is transforming industries worldwide, and construction is no exception. Companies are…

22 hours ago

LED Beacon Lights: What Does Each Colour Lens Mean?

A closeup shot of a warning lamp in the street at night, image by Freepik…

2 days ago

Impeller Flowmeters: Features, Installation Considerations & Uses

Impeller flowmeters at times referred to as paddlewheel meters are one of the frequently utilized…

6 days ago

Sell Old Electronics: Turn Your Used Devices into Cash

Photo by Héctor Martínez on Unsplash Introduction Yes! If you have old electronic devices that you…

1 week ago

The Effects of Low Power Factor on Electrical Equipment

The cosine of the angle between voltage and current in an AC circuit is referred…

1 week ago

The Science behind Ball Transfer Units: How They Work

Ball transfer units enable smooth, multidirectional movement of loads across flat surfaces. These mechanical components…

2 weeks ago