Process Plants Instrumentation

How to Minimize Water Vapor in Instrument Air/Pneumatic Systems

Water is one of the most common contaminants in instrument air systems, causing corrosion of metal components and as a result clogging of orifices. Special devices referred to as air dryers installed in instrument air systems use solid materials called desiccants to absorb water entrained in the compressed air. The desiccant material is “regenerated” by the dryer mechanism on a regular cycle; however it must be periodically replaced when its water-absorbing ability diminishes.

A simple technique to help extract water from an instrument air system is an accessory termed to as a water trap, typically found on air pressure regulators, this usually comes in form of a drain valve at the bottom of the regulator which should be opened periodically by maintenance personnel to allow for the collected water to be blown out of the regulator.

Another method to help minimize the amount of water reaching pneumatic devices is to properly orient all connections to the main air pipe (called header). Ideally, each instrument air tap coming off a header should do so on the top of the header, not the bottom. This way, the collected condensation inside the header will not go directly to the points of use, but rather will drain downhill to the lowest point in the header where a drain valve may be positioned. This is illustrated in the figure below:

Instrument air connections to the air header
Fig: Instrument air connections to the air header

In order to facilitate draining the header, the header should be slightly inclined, with the drain valve installed at the lowest point. Another key point to note, copper, brass, plastic and stainless steel are the preferred materials for instrument air piping, tubing, valves and fittings, since standard (iron) pipe will inexorably rust in the presence of condensation. Particles of rust created inside an instrument air system can cause a big problem with the tiny ports, nozzles, and orifices of pneumatic instruments.

Also read: Pneumatic Actuators

Share
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

What to Expect from PCB Assembly Services in China

The importance of printed circuit board (PCB) technology has escalated throughout the years with the…

2 days ago

Magneto-Optic Current Sensors for High Voltage, High Power Transmission Lines

One of the key challenges in measuring the electrical current in high voltage, high power…

4 days ago

How the Wiegand Effect is used in Sensing Instruments

The Concept behind Wiegand Effect Based Sensors   The Wiegand effect technology employs the unique…

6 days ago

Piezoelectric Accelerometer: Principle of Operation & Applications

An accelerometer is a sensor that is designed to measure acceleration or rate of change…

1 week ago

The USB-6009 Data Acquisition Card Features

The USB-6009 is a small external data acquisition and control device manufactured by National Instruments…

1 week ago

How X-Y Tables are used in Position Control Applications

X-Y tables are utilized as components in many systems where reprogrammable position control is desired.…

2 weeks ago