Power Systems

How to calculate the Power Factor Correction

Let us consider an inductive load taking a lagging current I at a power factor cosΦ1. For us to improve the power factor of such a circuit, the solution is to connect equipment in parallel with the load which takes a leading reactive component and partly cancels the lagging reactive component of the load. Figure 1.0 below shows a capacitor connected across the load.

A capacitor connected across the load
Figure 1.0 A capacitor connected across the load

The capacitor takes a current IC which leads the supply voltage V by 90°. The current IC partly cancels the lagging reactive component of the load current as demonstrated in the phasor diagram in Figure 1.1. The resultant circuit current becomes I’ and its angle of lag is Φ2. It is clear that Φ2 is less than Φ1 so that the new power factor cosΦ2 is more than the preceding power factor cosΦ1.

Figure 1.1 Phasor diagram

From the phasor diagram, we can clearly see that, after the power factor correction, the lagging reactive component of the load is reduced by I’ sin Φ2.

In other words,

I’ sin Φ2 = I sin Φ1 – IC

IC = I sinΦ1 – I’ sin Φ2

We know that:

            

Therefore the capacitance of the capacitor to improve the power factor from cosΦ1 to cosΦ2 is:

Also Read: Power Measurement in AC Circuits (Single-phase & Polyphase Systems)

Power Factor Correction Demonstration Using a Power Triangle

Let’s consider Figure 1.3 below:

Figure 1.3 Power triangle

The power triangle OAB is for the power factor cos Φ1, whereas power triangle OAC is for the improved power factor cos Φ2. Though the active power (OA) can be seen not to change with the power factor improvement, the lagging kVAR of the load is reduced by the power factor correction equipment, hence improving the power factor to cosΦ2.

The leading kVAR supplied by power factor correction equipment

Don’t miss out on key updates, join our newsletter  List

BC = AB – AC                  

= kVAR1 – kVAR2

= OA (tan Φ1 – tan Φ2)

= kW (tan Φ1 – tan Φ2)

Therefore, if we know the leading kVAR supplied by the power factor correction equipment, the appropriate results can be achieved.

Also Read: AC Circuits with Resistors, Inductors and Capacitors

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

The Problems Associated with Embedded Power Generation

Image source Pixabay The rate of the development of energy sources that are alternatives to…

8 hours ago

The Power of Automation in Construction: How It Transforms Efficiency and Safety

Image by Pixabay Automation is transforming industries worldwide, and construction is no exception. Companies are…

1 day ago

LED Beacon Lights: What Does Each Colour Lens Mean?

A closeup shot of a warning lamp in the street at night, image by Freepik…

2 days ago

Impeller Flowmeters: Features, Installation Considerations & Uses

Impeller flowmeters at times referred to as paddlewheel meters are one of the frequently utilized…

6 days ago

Sell Old Electronics: Turn Your Used Devices into Cash

Photo by Héctor Martínez on Unsplash Introduction Yes! If you have old electronic devices that you…

1 week ago

The Effects of Low Power Factor on Electrical Equipment

The cosine of the angle between voltage and current in an AC circuit is referred…

1 week ago