Process Plants Instrumentation

How a Bubbler Device is used for Level Measurement

An often utilized technique of indirectly measuring a liquid level is to measure the hydrostatic pressure at the bottom of the container. The level can then be extrapolated from the pressure and the specific weight of the liquid. This is the principle that a bubbler device operation is based on.

Pressure is commonly used as an indirect method of measuring liquid levels. Pressure increases as the depth increases in a fluid. The pressure is given by:

 p = ϒh

Where p is the pressure, ϒ is the specific weight of the liquid (alternatively we can use density (ρ) of the liquid), and h is the depth. The specific weight is temperature dependent, hence temperature correction is required.

A bubbler device for measuring liquid level is illustrated below:

Bubbler device for measuring liquid level.
Figure 1: Bubbler device for measuring liquid level.

Bubbler devices require a supply of clean air or inert gas to prevent interaction with the liquid as shown in Figure 1 above. Gas from a pressure regulator is forced through a tube via a flow regulator and the open end of the tube is close to the bottom of the tank. The specific weight of the gas is negligible compared to the specific weight of the liquid and can be ignored. The pressure required to force the liquid out of the tube is equal to the pressure at the end of the tube due to the liquid, which is the depth of the liquid multiplied by the specific weight of the liquid (requiring temperature correction).

Since pressure, p = ϒh, we can calculate the height, h = p/ϒ

Therefore if we measure the pressure required to force the liquid, and we know the specific weight or the density of the liquid, we can easily calculate the height which is the level of the liquid. This technique of level measurement can be used with corrosive liquids, because the material of the tube can be selected to be corrosion resistance. Additionally, electrical power is not needed however variations in specific weight due to temperature changes will affect the results of the measurement thus temperature correction should be considered.

John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

View Comments

Recent Posts

How Metal Fabrication is Powering the EV Revolution

Image: Pexels The electric vehicle (EV) market is accelerating at an unprecedented pace, driven by…

1 month ago

Basic Features of Numerical Control

Numerical control is a form of digital control that is employed on machine tools such…

1 month ago

Benefits of Installing Solar Panels in Your Home

Photo: Pexels Benefits of Installing Solar Panels in Your Home: Save Money and Your Planet…

2 months ago

How to Size a Control Valve

Pneumatic control valve Control valve sizing refers to the procedure determining the correct size of…

2 months ago

Process Control System Design for a Distillation Unit

The aim of a typical control system is to force a given set of process…

2 months ago

Limit Switches vs. Proximity Sensors

An object can be used to activate a switch directly, producing an ON or OFF…

2 months ago