Power Systems

Equipment Grounding vs. System Grounding

Grounding or earthing an electrical system is the process of connecting all metalwork/frame of electrical equipment i.e. the non-current carrying part or some electrical component of the system such as the neutral point in a star-connected system, one conductor of the secondary of a transformer, and so forth to the main body of earth. An earthing system has two distinct but related parts: (a) a low resistance conductor bonding the metalwork, connected to (b) an electrode or array of electrodes buried in the ground. The main purpose of grounding is to convey to earth any leakage of electrical energy to the metalwork without hazard to personnel or equipment.

Grounding/earthing may be classified as:

  • Equipment grounding
  • System grounding

Equipment grounding deals with earthing the non-current carrying metal parts of the electrical equipment whereas, system grounding implies earthing some section of the electrical system such as grounding of neutral point of star-connected system in generating stations and substations.

Equipment Grounding

As aforementioned, equipment grounding is the process of connecting non-current carrying metal parts such as metallic enclosure of the electrical equipment to the main body of the earth/soil in such a way that in case of insulation failure, the enclosure effectively remains at earth potential.

Equipment grounding
Figure 1.0: Ground wire connected to enclosure

The leakage current IL flows from the motor, through the enclosure and to the ground conductor, thus the enclosure remains at earth potential. As a result, the operator would not experience an electric shock.

System Grounding

System grounding is whereby some electrical part of the power system such as the neutral point of a star-connected system, one conductor of the secondary of a transformer, and so forth is connected to earth.

Importance of System Grounding

To help us illustrate the importance of system grounding, consider the following diagram showing the primary winding of a distribution transformer connected between the line and neutral of an 11 kV line.

Figure 1.1: Distribution transformer connected between 11 kV line and neutral.

If the secondary conductors are ungrounded, it would appear that a person could touch either secondary conductor without harm since there is no ground return. However, this is not true. With reference to figure 1.1 above, there is actually capacitance C1 between primary and secondary and capacitance C2 between the secondary and ground. This capacitance coupling can produce a high voltage between the secondary lines and the ground and depending on the relative magnitude of C1 and C2 it may be as high as 20% to 40% of the primary voltage. If a person touches either one of the secondary conductors, the resulting capacitive current IC flowing through the body could be harmful even in case of small transformers.

Figure 1.2: Secondary conductors of a distribution transformer ungrounded, this could cause a dangerous electric shock that may be fatal.

If one of the secondary conductors is grounded, the coupling reduces almost to zero and so is the capacitive current IC. Thus, the person wouldn’t experience an electric shock.

Consider another scenario where the secondary conductors of a distribution transformer are ungrounded and the high voltage line (11 kV) touches the 230 V conductor as illustrated in the figure below. This could be caused by an internal fault in the transformer or by a falling tree across the 11 kV and 230 V conductors.

Don’t miss out on key updates, join our newsletter  List

Figure 1.3: Primary winding of a distribution transformer connected between the line and neutral of an 11 kV line. The high voltage line (11 kV) touches the 230 V conductor due to a fault in ungrounded secondary in a distribution transformer posing a significant danger.

Under these conditions, a very high voltage is imposed between the secondary conductors and ground. This would immediately break the 230 V insulation, causing a huge flashover. This flashover could happen anywhere on the secondary network, perhaps inside a plant or a home. Therefore, ungrounded secondary in this situation is a potential fire hazard and may produce grave accidents under abnormal circumstances.

If one of the secondary conductors is grounded, the accidental contact between an 11 kV conductor and a 230 V conductor produces a dead short. The short circuit current follows the dotted path as shown in the figure below. This large current will blow the fuse on the 11 kV side, hence disconnecting the transformer and secondary distribution system from the 11 kV line.

Figure 1.4: Grounded secondary in a distribution transformer.
John Mulindi

John Mulindi is an Industrial Instrumentation and Control Professional with a wide range of experience in electrical and electronics, process measurement, control systems and automation. In free time he spends time reading, taking adventure walks and watching football.

Recent Posts

How Metal Fabrication is Powering the EV Revolution

Image: Pexels The electric vehicle (EV) market is accelerating at an unprecedented pace, driven by…

1 month ago

Basic Features of Numerical Control

Numerical control is a form of digital control that is employed on machine tools such…

1 month ago

Benefits of Installing Solar Panels in Your Home

Photo: Pexels Benefits of Installing Solar Panels in Your Home: Save Money and Your Planet…

1 month ago

How to Size a Control Valve

Pneumatic control valve Control valve sizing refers to the procedure determining the correct size of…

1 month ago

Process Control System Design for a Distillation Unit

The aim of a typical control system is to force a given set of process…

1 month ago

Limit Switches vs. Proximity Sensors

An object can be used to activate a switch directly, producing an ON or OFF…

2 months ago