An analog controller typically employs op-amps to provide the necessary gain and signal processing.
Let’s consider the flow control system below:
In the system above, the controller’s function is to maintain the flow of a liquid through a pipe at 6 gallons/minute.
This system consists of:
The flow valve is operated with a signal of 0 – 5 V, where 0 V corresponds to completely closed and 5 V is all the way open. The flow sensor provides an output signal of 0 – 5 V, which corresponds to 0 – 10 gallons/minute. The system is designed so that a sensor voltage swing of 2.5 V (i.e. 50 % of the range) will cause the flow valve to swing from full OFF to full ON. Thus, this system has what is termed to as a 50 % proportional band.
Op = Controller output due to proportional control
Recommended: The Ultimate Guide to Electrical Maintenance
KP = Proportional constant for the system called gain
E – Error, the difference between where the controlled variable should be and where it is
The analog controller illustrated in the figure above, consists of three op-amps: The first op-amp (A1) is acting as a differential amplifier with a gain of 1, subtracting the sensor feedback signal from the set point to create the error voltage. To maintain a flow rate of 6 gallons per minute, the set point must be 3 Vdc as calculated below using the flow sensor transfer function:
Set point = 6 gallons per minute x 5 V/ 10 gallons per minute = 3 Vdc
The output of A1 (error signal) is fed into op-amp A2, a simple (inverting) summing type amplifier whose purpose is to provide the proportional gain (kp). To make the required gain of 2, the ratio of Rf/Ri (20 Kꭥ / 10 kꭥ) is set to 2. Note that, the pot RB can add bias voltage to the error signal if necessary. The output of A2 must be inverted to make the output positive; this is done with A3, which is simple inverting amplifier with unity gain.
You can also read: Basic Features of Modern PID Controllers
Industrial measurement and control processes employ standard process signals that are used throughout all the…
The integration of advanced technologies in security systems has become imperative for ensuring safety and…
Power quality may be affected by a number of issues. Our discussion in this article…
Power quality has become an important issue to electricity consumers at all levels of consumption.…
The importance of printed circuit board (PCB) technology has escalated throughout the years with the…
One of the key challenges in measuring the electrical current in high voltage, high power…